intrinsic identifier - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

intrinsic identifier - vertaling naar russisch

EQUATION WHICH DEFINES A CURVE INDEPENDENTLY OF A COORDINATE SYSTEM
Intrinsic curve; Intrinsic coordinates

intrinsic identifier      
идентификатор на основе характерных признаков личности; биометрический идентификатор
unique identifier         
IDENTIFIER WHICH IS UNIQUE AND PERMANENT WITHIN A SUBSET OF SPACE AND TIME
Unique Identification Number; Unique identifiers; Unique Identifier(UID); Unique Object Identifier; Unique identifying code
однозначный идентификатор; специфический идентификатор
GUID         
128-BIT NUMBER USED TO IDENTIFY INFORMATION IN COMPUTER SYSTEMS
GUID; Globally unique identifier; UUID; Clsid; Guid; CLSID; Uuid; REFIID; UUIDs; Globally Unique Identifier; Universally Unique Identifier; Libuuid; CUID; Cuid; Universal unique identifier; Globally unique universal identifier; Globally unique; Universally unique

общая лексика

Globally Unique Identifier

глобально уникальный идентификатор

идентификатор, присваиваемый объекту регистрации в системном реестре Windows

Definitie

CLSID
CLasS IDentifier (Reference: COM)

Wikipedia

Intrinsic equation

In geometry, an intrinsic equation of a curve is an equation that defines the curve using a relation between the curve's intrinsic properties, that is, properties that do not depend on the location and possibly the orientation of the curve. Therefore an intrinsic equation defines the shape of the curve without specifying its position relative to an arbitrarily defined coordinate system.

The intrinsic quantities used most often are arc length s {\displaystyle s} , tangential angle θ {\displaystyle \theta } , curvature κ {\displaystyle \kappa } or radius of curvature, and, for 3-dimensional curves, torsion τ {\displaystyle \tau } . Specifically:

  • The natural equation is the curve given by its curvature and torsion.
  • The Whewell equation is obtained as a relation between arc length and tangential angle.
  • The Cesàro equation is obtained as a relation between arc length and curvature.

The equation of a circle (including a line) for example is given by the equation κ ( s ) = 1 r {\displaystyle \kappa (s)={\tfrac {1}{r}}} where s {\displaystyle s} is the arc length, κ {\displaystyle \kappa } the curvature and r {\displaystyle r} the radius of the circle.

These coordinates greatly simplify some physical problem. For elastic rods for example, the potential energy is given by

E = 0 L B κ 2 ( s ) d s {\displaystyle E=\int _{0}^{L}B\kappa ^{2}(s)ds}

where B {\displaystyle B} is the bending modulus E I {\displaystyle EI} . Moreover, as κ ( s ) = d θ / d s {\displaystyle \kappa (s)=d\theta /ds} , elasticity of rods can be given a simple variational form.

Vertaling van &#39intrinsic identifier&#39 naar Russisch